分享好友 百科首页 百科分类 切换频道

低温热水地面辐射采暖用定压膨胀水箱选型算法

2012-06-02 16:18暖通百科
低温热水地面辐射采暖用定压膨胀水箱选型算法
1 前言
国家相关部门推进建筑节能力度的逐步加大引起了建筑设备专业人员的深入思考:在科技如此发达的今天,建筑设备系统这个建筑耗能大户的节能必须依靠“变频”“数码”这些吸引眼球的字眼吗?我们是不是过分地期盼“COP”“EER”等近乎极限的提高了?节能的技术和措施必须是高科技新技术吗……
在种类繁多的闭式循环水系统定压设备中,一种看似落后的设备——高位膨胀水箱又重新被我们重视起来。比起电接点压力表、变频补水泵、罐式定压补水机组等穿着新技术自动化外衣的定压设备,高位膨胀水箱具有造价低廉、水力稳定性好的优点,其最大的优点是运行费用低,这是由其容积惰性大的结构特性决定的。但其最大的缺点是水箱安放高度需要高出系统最高点,一根定压水管必须穿过重重楼板把最高处的水箱与设备机房的循环水泵吸入口连接,但在大力倡导节能减排的当今社会,付出这点代价取得降低运行费用的目的是值得的。
与早期高位定压膨胀水箱广泛使用的时期相比,新建建筑采暖形式有了很大的变化——在节能政策和新建材、新技术的推动下,采用低品位热能的低温热水地面辐射采暖形式得到广泛应用,特别是居住建筑。翻开新出版的《实用供热空调设计手册(第二版)》(以下称文献[1]),并没有找到适合低温热水地面辐射采暖形式的60℃ 以下热水供暖系统膨胀水箱计算方法。本文试图从最基本的膨胀量计算公式入手,推导出适合工程使用的低温热水地面辐射采暖用定压膨胀水箱计算及选型方法。
低温热水地面辐射采暖用定压膨胀水箱计算
查阅文献[2],动力循环供热工程膨胀水箱容积计算公式如式1。
Vp=αΔtmax·Vc                              式1
式中:Vp——膨胀水箱有效容积(即信号管到溢流管之间的容积),L;
      α ——水的体积膨胀系数,α=0.0006,1/℃;
      Vc——系统内的水容量,L;
Δtmax——考虑系统内水受热和冷却时水温最大波动值,一般以20℃水温算起。
文献[4]规定低温热水地面辐射采暖供水温度不超过60℃。实际工程中,一般按照文献[5][6]采取节能措施的建筑采暖供回水温度一般为45℃~35℃,未采取节能措施的建筑采暖供回水温度一般为55℃~45℃。这样按照最高温度55℃和45℃计算,式1可以简化为式2(节能建筑)和式3(非节能建筑)。
V=0.015Vc                              2
V=0.021Vc                              3
这样,主要矛盾就集中在系统水容量Vc上了。文献[1]把散热器采暖系统中,管道和散热器水容量换算为供给1kW热量所需的水容量,并将不同型号的散热器水容量制成表格,供设计人员查询使用。低温热水地面辐射采暖系统散热末端设备为敷设于地面垫层的盘管。选型方法采用的是文献[4]提供的单位散热面积,散热盘管的使用量是和埋管面积直接联系的。为适应工程使用,我们也应该把Vc与总热负荷或采暖面积联系起来。
工程上最为常见的地板埋管规格为de20×2.0,其内径为16mm。得出单位管长的水容量为0.201L/m。确定整个工程地埋管道的长度就成为关键问题。下面我们以节能建筑采暖系统为研究对象,推导低温热水地面辐射采暖散热盘管和采暖面积的关系。表1为本文设定的采暖系统标准工作状态参数。
1:本文研究的地板辐射采暖系统工作状态参数
项目
参数
备注
末端分水器供水温度
45℃
 
末端集水器回水温度
35℃
 
建筑采暖热指标
32W/㎡
居住建筑
地面材料
水泥、陶瓷等,热阻0.02㎡·K / W
 
1 某房间地板平面布置图
1为A房间地热盘管布置图,地埋盘管布置间距为300mm。我们可以像A房间平面图里那样,假想用300×300mm的方砖满布整个房间,无论管路采用什么形式布置,无论出口方向如何选取,每块方砖中只有一段300mm长管道。这样理论上我们可以认为:,每段300mm长的管道“负担”一块方砖。由此我们得出了管长与采暖面积的理论关系:只要某一房间内各方向管道间距相等,并数值确定,管道长度与房间布管面积之比就接近一个固定的数值,本文称这个比值为管长面积比,用λ表示,量纲为1/m。而且面积越大,实际比值就越接近这个数。如此例中:
理论      m-1
实际      m-1
我们把文献4列出的几种典型间距的管长面积比总结于表2。这也是采暖面积与管长的关系,由式4表示。
2:典型管间距的管长面积比
管间距(mm)
方砖理论管长(m)
理论管长面积比λn(m-1
300
300
10/3
250
250
4.0
200
200
5.0
150
150
20/3
100
100
10
Lcn=λn An                            4
式中:Lcn——房间内敷设盘管的总长度,m;
      λn——房间的管长面积比,1/m;
      An——房间的采暖面积,㎡。
误差分析
在以上方法中,影响实际管长面积比偏离理论值的主要原因有:
A、管道转弯处管长不等于管道间距。由于目前常用管材弯管半径为管道直径6倍,de20×2.0管道转弯半径为120mm,精确制图可知,管道间距300mm的时候,管道转弯的方砖中的管道比理论值多16%,其他几种典型管间距情况下实际管道均小于理论值。每个房间,管道转弯的个数为二倍的房间短边方砖个数。
B、房间内部分区域敷设管道不规则。多数工程中房间边长是不一定能被管间距整除的,即图1中方砖个数不一定是整数,以回形布置管道的房间为例,无论是设计还是施工埋管的顺序都是由外及里的,这就导致了非整数矛盾集中在房间中心区域的少部分的管道处理上。由于弯管半径所限,实际管道长度是比理论值小的。这就使得通过式4计算得出的管长结果趋于保守。
C、盘管外缘管道距内墙的100mm间距包含于采暖面积An,但在实际布置盘管时这一块面积中是不埋设管道的。无论这个间距内面积累加后有多大,这部分地面是不含有管道的。所以采用房间采暖面积计算管长,比实际情况又多出一小部分管道。从整栋建筑来说,这种冗余正比于房间个数,反比于单个房间的面积。
D、建筑采暖面积和使用面积的差别。例如,从整栋建筑来看,采暖房间的隔墙是包含在采暖面积An中的,而实际情况墙内是不布置盘管的。这又使计算结果趋于安全。
由此可知,我们采用采暖面积计算采暖房间地埋盘管的水容量是既合理又使计算结果趋于安全的。在整体采暖系统的计算中,我们可以使用系统总采暖面积A进行计算,即:
                                        5
再来看看系统的管长面积比λ。如表2,在单个房间中根据管道的标准间距,管长面积比λn是具有确定的值的。但一个庞大的供热系统一般由若干单体建筑构成,单体建筑又由不计其数的房间组成,这就使得λn在整个供热系统中失去意义。严格的说,整个采暖系统的管长面积比等于系统中各房间的λn在采暖面积上的加权平均值。即:
                                        6
工程上进行这么精确的计算既不现实也没必要。我们可以采用系统中常用的管长面积比值,乘以管长修正系数β,即:
      λ=β·λn                            式7
节能建筑中的绝大多数管间距都采用300mm,这对上述思路的应用提供了更便捷的条件。笔者对工作所在地区的采暖工程进行总结,实际采暖系统的λ阙值为(10/3,4.0),而且偏向于下限,本文提倡β取值范围为1.05~1.10。单体β值与建筑的体形系数有关系,有条件的读者可以进行推导。本文采用β取值为经验值,建议读者采用时根据各地不同情况对β值进行试算总结。
结论
综上,我们可以得到节能建筑埋地盘管水容量所引起的膨胀量公式:
V1=0.003015β·λn·A                                式8
式中:V1——地埋盘管内的水量引起的水膨胀量,L;
           β——管长修正系数,阙值1.05~1.10,1;
          λn——管长面积比,取值10/3,m-1
           A——供热系统的采暖面积,㎡。
除了供热末端盘管,系统还有管道和其它设备的水容量。低温热水地面辐射采暖的管路的工作状态与空气调节水系统冬季工况非常相似,文献[7]提供了空气调节水系统的管路水膨胀量的计算方法,摘录如下,本文不再赘述。
V2=0.015[(Vg1+Vg2+Vg3)Q+Vn]                        式9
式中:V2——供热管道内水量引起的水膨胀量,L;
Vg1——10℃温差下,室内机械循环的单位负荷水容量,一般取15.6,(按400m流程考虑,差别较大时,可线性修正。)L/Kw;
Vg2——10℃温差下,室外机械循环的单位负荷水容量,一般取11.6,(按600m流程考虑,差别较大时,可线性修正。)L/Kw;
Vg3——系统热源设备的水容量,锅炉取2~5,换热器取1,L/Kw;
Vn——系统中其它设备的水容量,如水处理设备、储水罐等附属设备,体积不大时可忽略不计,取值详见设备规格参数表,L;
Q——供热总热负荷,kW。
非节能建筑低温热水地面辐射采暖供热系统的膨胀量计算与节能建筑相比,区别在水温和水容量上,式3体现了水温差别,水容量可采用调整β值的方法来近似得出。于是得出非节能建筑埋地盘管水量所引起的膨胀量公式:
V1=0.004221β·λn·A                              式10
式中:V1——地埋盘管内的水量引起的水膨胀量,L;
           β——管长修正系数,λn取10/3的前提下,建议取值范围1.10~1.60,1;
          λn——管长面积比,取值10/3,m-1
           A——供热系统的采暖面积,㎡。
管道及其它设备水容量公式如式11。
V2=0.021[(Vg1+Vg2+Vg3)Q+Vn]                    式11
式中参数意义及单位同式9。
对低温热水地面辐射采暖系统膨胀水箱计算方法的总结,本文得出的结论及选用的数值不一定适用于所有地区所有情况。但这一思路是值得参考的,读者可以根据各地区不同情况和使用习惯总结出合适的计算公式和参数取值范围。也希冀高位膨胀水箱这一节能特点突出的定压设备得到广泛应用。
参考文献:
[1] 陆耀庆.供热空调设计手册(第二版)[M].北京:中国建筑工业出版社,2008
[2] 贺平等.供热工程(第三版)[M].北京:中国建筑工业出版社,1993
[3] 付祥钊.流体输配管网(第一版)[M].北京:中国建筑工业出版社,2001
[4] JGJ142-2004. 地面辐射供暖技术规程[S]
[5] GB50188-2005. 居住建筑节能设计标准[S]
[6] GB50189-2005. 公共建筑节能设计标准[S]
[7] 路延魁.空气调节设计手册(第二版)[M].北京:中国建筑工业出版社,1995
[8] GB50019-2003.采暖通风与空气调节设计规范[S]
举报
收藏 0
评论 0
某地下广场排烟系统性能分析
以国家空调设备质量监督检验中心通风实验室对某地下广场的两套排烟系统的性能测试数据为依据,对排烟系统性的风量、风速、风压、阻力等性能参数进行了归纳和比较分析。结果发现,各系统的风量及风压都达不到设计要求,主要原因是系统阻力过大,所选风机过小,另外,风机性能也不能达到额定参数。本文旨在分析排烟系统中存在的问题,为工程设计、施工人员提供一定的参考。

2012-06-022056

地下汽车库诱导通风系统设计与应用
简要介绍了诱导通风系统的基本原理、特点和布置方法,并结合工程实例阐述了地下汽车库诱导通风系统的设计方法和设计中应注意的问题。

2012-06-021981

通风柜系统工程设计及应用
论述通风柜的功能、种类、选择和各种系统的设计,结合应用实例分析各种系统的特点及适应范围

2012-06-022203

关于地下停车库的通风设计及诱导通风方式中的一些问题
分析并介绍了地下停车库的通风系统设计和通风量计算。介绍了诱导通风系统的特点和基本原理,并介绍了地下停车库诱导通风系统的设计方法,指出了这种系统与传统系统的差异及存在的问题。

2012-06-023483

再谈机械防排烟系统控制程序设计
机械防排烟系统的控制程序是保障该系统正常运行的关键之一,暖通设计人员对该系统的动作要求和控制原理必须非常清楚。笔者根据现行相关的规范要求,结合工程设计实例,并与电气工程师们反复讨论研究,对机械防排烟系统中常用的几种控制程序重新作了总结。

2012-06-022463

中小学实验室通风设计分析
介绍了中小学教学楼实验室通风系统的划分与设计,分析探讨了实验室内通风系统的形式及特点。

2012-06-023711

人防工程通风设计常见问题
人防工程是我国建设中不可缺少的组成部分,特别是自《人防法》颁布实施以来,每年都有大量的人防工程开工建设。本文通过多年来人防通风工程设计和审查的经历,对在人防工程通风设计中,特别是对面大量广的一、二等人员掩蔽工程和物资库、汽车库工程存在的常见问题,以及造成的原因进行了分析和总结,对工程中常用设计规范的适用范围,进行了归纳,并对人员掩蔽工程最小防毒通道换气次数和滤毒工况下新风量的取值,结合工程的具体实例,给出了正确的计算方法。

2012-06-023095

医院气流流向的控制设计
医院气流流向控制设计在现有规范中没有做出明确规定,本文就该项空白进行探讨,阐述了医院中气流流向控制的必要性,提出气流流向设计的步骤,并分析了缝隙计算法、经验统计数据法,同时提出了一种新的计算方法—阻抗计算法。

2012-06-021629

办公、家庭用置换通风空调器原理与设计
根据置换通风的原理、特点和应用的条件,本文提出了办公、居室中应用空调器实现置换式通风空调的工作原理,按使用场合进行分类。结合办公室、家居环境置换式通风空调特点,给出了系统设计步骤和计算方法,并指出置换通风空调器设计安装应注意的问题。

2012-06-021655